
There is no 16-Clue Sudoku: Solving the Sudoku
Minimum Number of Clues Problem

Principal Investigator: Gary McGuire∗

Project Collaborator: Bastian Tugemann
Project Contributor: Gilles Civario

January 1, 2012

Abstract

We apply our new hitting set enumeration algorithm to solve the sudoku mini-
mum number of clues problem, which is the following question: What is the smallest
number of clues (givens) that a sudoku puzzle may have? It was conjectured that the
answer is 17. We have performed an exhaustive search for a 16-clue sudoku puzzle,
and we did not find one, thereby proving that the answer is indeed 17. This article
describes our method and the actual search.

The hitting set problem is computationally hard; it is one of Karp’s twenty-one
classic NP-complete problems. We have designed a new algorithm that allows us
to efficiently enumerate hitting sets of a suitable size. Hitting set problems have
applications in many areas of science, such as bioinformatics and software testing.

∗School of Mathematical Sciences, University College Dublin, Ireland. E-mail: gary.mcguire@ucd.ie

1

Contents

1 Introduction 3

2 History 6
2.1 Our Preliminary Work . 6
2.2 Previous Work by Others . 6
2.3 Heuristic Arguments That 16-Clue Puzzles Do Not Exist 9

3 Summary Description of Method 11

4 The Catalogue of All Grids 12
4.1 Equivalence Transformations . 12
4.2 Applying Burnside’s Lemma . 13
4.3 Enumerating Representatives . 13

5 Checker 14
5.1 Overall Strategy of Checker . 14
5.2 Unavoidable Sets For an Individual Grid 14

5.2.1 Finding minimal unavoidable sets 16
5.2.2 Higher-degree unavoidable sets 20

5.3 Enumerating the Hitting Sets For an Individual Grid 23
5.3.1 Algorithm of the original checker 23
5.3.2 Algorithm of the New checker 28

5.4 Using A Sudoku Solver . 33
5.5 Tradeoffs . 33
5.6 Some remarks on the implementation of the new checker 34
5.7 Testing checker . 34

6 Running Through All Grids: Further Details about Code Performance and
the Computation 36
6.1 Platform . 36
6.2 Load Balancing and Task Farming . 36
6.3 The Actual Computation . 37

7 Acknowledgements 38

2

1 Introduction

In sudoku, the puzzle solver is presented with a 9×9 grid, some of whose cells already
contain a digit between 1 and 9. The puzzle solver must complete the grid by filling in the
remaining cells such that each row, each column, and each 3×3 box contains all digits
between 1 and 9 exactly once. It is always understood that any proper (valid) sudoku
puzzle must have only one completion. In other words, there is only one solution, only
one correct answer.

In this article we consider the issue of how many digits are given to the solver in the
beginning. There are 81 cells in the grid. Typically, in newspapers and magazines around
25 clues (digits) are given. If too few clues are given then there are multiple completions,
i.e., the puzzle becomes invalid. It is natural to ask how many clues are always needed.
This is the minimum number of clues problem:

What is the smallest number of clues that can possibly be given
such that a sudoku puzzle still has only one solution?

More informally — what is the smallest number of clues that you could possibly have?
There are puzzles known with 17 clues, here is an example:

8 1
4 3

5
7 8

1
2 3

6 7 5
3 4

2 6

However, nobody has found any 16-clue puzzles, and it was conjectured that the answer
to the sudoku minimum number of clues problem is 17. We have proved this conjecture.
In this article we present our method.

The strategy we used to finally solve this problem is an obvious one — exhaustively
search through all possible solution grids, one by one, for a 16-clue puzzle. So we took the
point of view of considering each particular completed sudoku grid one at a time, and then
looking for puzzles whose solution is that particular grid. We think of these puzzles as
being “contained in” that particular grid. Our search turned up no proper 16-clue puzzles,
but had one existed, then we would have found it.

3

A brute force exhaustive search would not have been feasible, but we have developed
a novel algorithm that made the exhaustive search possible. Our programme, named
checker, improves greatly over the original open-source version of checker from 2006,
which would have been far too slow to search all sudoku solution grids. Indeed, the paper
[18] estimates that our original version would take over 300,000 years on one computer
to finish this project.

It is worth noting that there have been attempts to solve the minimum number of
clues problem using mathematics only, i.e., not using a computer. However, nobody has
made any serious progress. In fact, while it is very easy to see that a sudoku puzzle with
seven clues will always have multiple completions, because the two missing digits can be
interchanged in any solution, finding a theoretical reason why eight clues are not enough
for a unique solution already seems hard. This is far from the conjectured answer of 17,
so a purely mathematical solution of the minimum number of clues problem is a long way
off.

Other Applications

Solving the minimum number of clues problem serves as a way to introduce our algo-
rithm for efficiently finding all hitting sets of size k, where k is a given positive integer.
This new algorithm has many other potential applications than just sudoku. To begin
with, it is applicable to any instance of the hitting set problem, and such situations fre-
quently occur in Bioinformatics (e.g., gene expression analysis), Computer Networks and
Software Testing [11]. We note that the vertex cover problem from graph theory can be
reduced to the hitting set problem, and so can the set cover problem, so both of these
are actually equivalent to the hitting set problem. The set cover problem has applications
to interference in cellular networks. Another situation where our algorithm could be ap-
plied is the quasi-group (Latin square) completion problem from combinatorics. Indeed,
the minimum number of clues problem is an instance of a whole family of problems in
combinatorics, where one studies critical sets. Critical sets are subsets of a structure that
uniquely determine the whole structure. In other words, the entire structure can be re-
constructed from the critical set. It is natural to look for the smallest possible critical set,
which is what we are doing here for sudoku.

Other Comments

The computation was carried out on the Stokes cluster which is owned and run by the
Irish Centre for High-End Computing (ICHEC). For further details see Section 6.

4

This article is not about any of the following topics: how to solve sudoku puzzles,
how to create sudoku puzzles, how to rate the difficulty of sudoku puzzles, how to write a
sudoku solver program.

Finally, we emphasize that we are not saying that all completed sudoku grids contain
a 17-clue puzzle (in fact, only a few do). We are saying that no completed sudoku grid
contains a 16-clue puzzle.

5

2 History

2.1 Our Preliminary Work

The work on this project began over six years ago. Back in August 2005, we started
writing checker, which to our knowledge was the first computer programme that made it
possible to search a sudoku solution grid exhaustively for all n-clue puzzles, where both
the grid and the number n were supplied by the user. The last release of this original,
open-source version of checker that we posted on the Internet is of November 2006 [2].
In 2009 we started working on a completely new implementation of checker optimized for
the case n = 16, which up to now we had never published anywhere. This new version of
checker takes only a few seconds to search an average sudoku solution grid for all 16-clue
puzzles, whereas the last release from 2006 takes about an hour per grid on average.

In July 2009 we were awarded a Class C project from ICHEC to do some early testing
on their clusters. In September 2009 we also successfully applied for a PRACE prototype
award [3]. We were granted almost four million core hours on JUGENE, as well as
time on a Cray XT5 cluster at CSC in Finland, an IBM Power 6 cluster at SARA in the
Netherlands, and a Bull cluster at CEA in France. The main goal of this project was
to evaluate different strategies for the load-balancing (see Section 6) of the hitting set
problem. The actual code we ran was an early version of the new checker.

2.2 Previous Work by Others

• In Japan, sudoku was introduced by the publisher Nikoli in the 1980s. Japanese
puzzle creators have made puzzles with 17 clues, and have surely wondered whether
16 clues are possible. Nikoli have a rule that none of their puzzles will have more
than 32 clues.

• Over the past several years, people have collected almost 50,000 solution grids
containing one or more 17-clue puzzles. These can be found on Gordon Royle’s
website [1]. Most of them were found by Royle, who compiled this list of 17-clue
puzzles while searching for a 16-clue puzzle. There is constant discussion about
the minimum number of clues problem (including a number of false proofs) in the
relevant online discussion boards [4]. This is where we became aware of a com-
pleted grid found by Royle which contains twenty-nine different 17-clue puzzles
(see Section 5.3.1). This was considered a likely grid to contain a 16-clue puzzle,
and initially we started work on checker to solve this particular problem. Referring
to the minimum number of clues problem, Royle states (January 3rd, 2011) on his

6

blog: “Doing the numbers suggests that something clever will be needed to solve
this; even projected computer advances won’t be enough to resolve it in my lifetime
... ”

• The sudoku minimum number of clues problem has been mentioned in several jour-
nal publications [6, 7, 8, 9]. The last reference is an article entitled The Science

behind Sudoku and written by the French Computer Science Professor J.-P. Dela-
haye, which appeared in the June 2006 issue of the Scientific American. This article
quotes one of the authors (Gary McGuire) in conjunction with the sudoku minimum
number of clues problem.

• In 2008 an eighteen-year-old girl submitted a proof of the nonexistence of a 16-clue
sudoku puzzle as her entry to the German national science competition for high-
school students (“Jugend forscht”), and she also published two papers (in German)
in the journal “Junge Wissenschaft”. However, Sascha Kurz, a mathematician at the
University of Bayreuth later had a project proposal for a Master’s thesis, that indi-
cates he had found mistakes in the proof. That Master’s project was to summarize
the state of the art of the minimum number of clues problem, and then to solve part
of the problem. The proposal specifically mentions the above project, and cites the
two respective papers, saying: “Unfortunately, the main arguments in the proof are
not correct, so that the problem is still open.”

• A paper in the Notices of the American Mathematical Society [8] by Herzberg
and Murty states on the first page: “For anyone trying to solve a Sudoku puzzle,
several questions arise naturally. For a given puzzle, does a solution exist? If the
solution exists, is it unique? [...] What is the minimum number of entries that can
be specified in a single puzzle in order to ensure a unique solution?”

• A quick Internet search reveals that the sudoku minimum number of clues problem
has been subject of, or at least mentioned in, quite a few talks in seminars/colloquia
in mathematics and computer science department around the world. For example,
a researcher in mathematics from the University of St. Andrews, Max Neunhöffer,
gave a talk Is there a Sudoku puzzle with 16 clues? at the University of Aberdeen,
outlining the very strategy we used for solving the minimum number of clues prob-
lem [10].

• Mladen Dobrichev, who appears to be a very competent programmer, has written
a tool named GridChecker [17]. This programme basically does the same thing as
our open-source version of checker, although it is considerably faster. In fact the

7

readme file for GridChecker mentions our original checker and even provides the
URL of its homepage, saying: “The idea [of GridChecker] is based on the similar
tool named checker (http://www.math.ie/checker.html).”

• In 2009, a team at the University of Graz in Austria verified, also using a computer
search, that no proper sudoku puzzle can exist with fewer than 12 clues, and ap-
parently they had also most of the computations finished that showed that in fact
at least 13 clues are necessary. Their stated aim was build up to proving that no
16-clue sudoku exists, although that project appears not to be active anymore.

• A group of computer scientists at the National Chiao Tung University in Taiwan
led by Professor I-Chen Wu in November 2010 published the paper Solving the

Minimum Sudoku Problem [18]. In this article, which refers to one of the authors
(Gary McGuire) and checker, they describe some of the techniques they used to
speed up our original version of checker by a factor of 129. Professor Wu also gave
a talk about this at the 2010 International Conference on Technologies and Appli-
cations of Artificial Intelligence. Around this time the Taiwanese research group
started a distributed search over the Internet using BOINC, to search all inequiv-
alent sudoku grids for a 16-clue puzzle. According to the project’s website, as of
December 31st, 2011 they have checked 1,453,000,000 grids.

• Two research students at the University of Glamorgan in Wales, Sian Jones and
Jemma Williams, are studying aspects of sudoku, see [5].

And these are the researchers we are aware of — it is of course very possible that there are
further teams also working on the sudoku minimum number of clues problem, or related
problems.

Regarding the Hitting Set Problem, we were surprised by the paucity of relevant litera-
ture, given the wide range of applications of an efficient algorithm for finding hitting sets.
Most authors seem to have concentrated on the special case of the d-hitting set problem
for small d, such as d = 3, where d is the maximum number of elements in the sets to be
hit. To tackle the sudoku minimum number of clues problem efficiently, we would have
needed a method for d = 12 at least, so that these algorithms were not useful to us. Some
researchers have tried to generalize their ideas to the case of arbitrary d, but the only such
recent paper we could find presents an algorithm that has running time O(αk + n), where
α = d− 1 + O(1

d
) and n is the cardinality of the global set [12]. However, this algorithm

is very similar to the one we used in our original version of checker from 2006. In a
forthcoming paper we will therefore present the formal complexity analysis of our new

8

algorithm. We estimate its average-case complexity to be O(dk−2) with any instance of
the hitting set problem for which the sets to be hit are of comparable density as with the
sudoku minimum clues problem.

2.3 Heuristic Arguments That 16-Clue Puzzles Do Not Exist

There are two heuristic arguments at to why 16-clue puzzles should not exist, which we
present here. These arguments were posted on the sudoku forum.

The first of these arguments shows that a 16-clue puzzle is not likely to exist. However,
it also proves that a 17-clue puzzle is not likely to exist, and we know these do exist!
Consider the total number of all possible grids, which is about (6.7)(1021). A blank
grid has this number of solutions. Suppose that each time we insert a clue in a blank
grid we divide the number of possible solutions by 9. Since (6.7)(1021)/922 = 6.8 and
(6.7)(1021)/923 = 0.75, we conclude that having 23 or more clues should give a puzzle
with a unique solution, and 22 or fewer clues should give a puzzle with more than one
solution. This argument assumes that all clue placements have an equal effect, which
is clearly false; however, it perhaps gives an indication that puzzles with fewer than 22
clues are going to be rare. Puzzles with 16 (and 17) clues can therefore be assumed to be
extremely rare.

The second argument is statistical (due to Ed Russell). People who send Royle a
list of 17-clue puzzles usually do not have many new puzzles. One correspondent sent
700 puzzles, of which 33 were new. Assuming that Royle and this correspondent drew
their 17-clue puzzles at random from the universe of all 17-clue puzzles, the maximum
likelihood estimator for the size of the universe is about 35,000. This is an underestimate
because of the (human) way we search for these puzzles, nevertheless we can assume that
the 50,000 puzzles we have found must be nearly all the 17-clue puzzles that exist. On
this list there are twenty-nine 17-clue puzzles with the same solution, but no more than
twenty-nine have been found with the same solution. If a 16-clue sudoku exists, adding
one clue to it in all possible ways would give sixty-five 17-clue puzzles with the same
solution. Therefore, if we assume (by the argument given above or otherwise) that the list
of known 17-clue puzzles is nearly complete, it is highly unlikely that a 16-clue puzzle
exists.

On the other hand, one can argue that Royle’s list of 17-clue puzzles may not be
complete. To explain this, consider how the list was generated. To construct 17-clue
puzzles, Royle started with a small number of 17-clue sudoku puzzles. He started to
perturb them in various ways, by swapping a number for another number, or shifting an
entry to another cell, all the time keeping track of any new ones that were found. This is

9

known in computer science as the A* search algorithm. He was hoping that by finding
enough 17-clue puzzles, he would eventually stumble across a 16-clue puzzle contained
in one of the 17-clue ones.

Therefore, the known 17-clue puzzles were mostly constructed from each other, so
in some sense they are “close” to each other in the space of all puzzles. There could be
another bunch of 17-clue puzzles that have not been found yet, lurking in some corner
of puzzle space, and this bunch might contain sixty-five 17-clue puzzles with the same
solution (and a 16-clue puzzle). This is highly unlikely, but theoretically possible.

10

3 Summary Description of Method

Our goal was to show that there are no sudoku puzzles with 16 clues, or of course to find
one, had one existed. In summary, our method was as follows.

1. Make a catalogue of all 5,472,730,538 completed sudoku grids.

2. Write a program (named checker) that efficiently searches within a given completed
sudoku grid for sudoku puzzles with 16 clues whose solution is the given grid.

3. Run through the catalogue of all completed grids and apply checker to each grid in
turn.

We shall explain each of these steps in the next sections.

11

4 The Catalogue of All Grids

In total, there are exactly 6, 670, 903, 752, 021, 072, 936, 960 ≈ 6.7 · 1021 sudoku solution
grids [14]. However, it is not necessary to analyze all of them. For instance, permuting the
digits of a given solution grid will obviously not change the substance of the grid as the
individual digits carry no significance (any nine different symbols could be used). There
are several other such equivalence transformations that can be performed, e.g., flipping
the grid or taking its transpose, or interchanging the first and second row, etc. None of
these alter the property of containing a 16-clue puzzle. This allows us to introduce an
equivalence relation in the mathematical sense on the set of all sudoku solution grids,
where two grids are equivalent if one may be obtained from the other by applying one or
more of the equivalence transformations.

4.1 Equivalence Transformations

Definition. A band of rows is the set of rows 1-3, rows 4-6, or rows 7-9. A stack of
columns is the set of columns 1-3, columns 4-6, or columns 7-9.

Definition. Call two completed sudoku grids equivalent if one can be obtained from the
other by any sequence of the equivalence transformations below.

A solution grid contains a 16-clue puzzle if and only if all grids equivalent to it have
a 16-clue puzzle. Therefore, it is enough to inspect any one representative from each
equivalence class of grids.

Here are the equivalence operations.

1. permutation of the digits 1-9,

2. permutation of the rows. These come in two types:

(a) permute the three rows within a given band,

(b) permute the bands,

3. permutation of the columns. These come in two types:

(a) permute the three columns within a given stack,

(b) permute the stacks,

4. transposing the grid.

12

Rotations and reflections are already included in these.
A natural question to ask is: How many completed Sudoku grids are there up to

equivalence? This is a natural mathematical question anyway, but it is a relevant question
for us because we only need to inspect one grid from each equivalence class for a 16-clue
puzzle.

4.2 Applying Burnside’s Lemma

The set of all these equivalence transformations forms a group of order 9!× 64 × 64 × 2.
The permutation part (i.e., when the digit permutations are omitted) is a group of order
64 × 64 × 2 = 3, 359, 232. This group acts on the set of all completed sudoku grids. De-
termining the orbits and the stabilizers of this action can be done using Burnside’s lemma
from group theory. This was carried out by Ed Russell and Frazer Jarvis in 2006 [15],
and they showed that there are exactly 5,472,730,538 solution grid equivalence classes, a
result that was later also verified by others.

4.3 Enumerating Representatives

For our project it is not enough to know the number of equivalence classes. It is necessary
to enumerate a set of representatives of the equivalence classes, and store these in a file.
Glenn Fowler of AT&T Labs wrote a programme that enumerates all the inequivalent
completed grids. Uncompressed, the catalogue of grids would require approximately
418 GB of storage space. Fowler also wrote a data compression algorithm to store the
catalogue of grids in under 6 GB.1 Fowler has kindly shared his executables and we have
used them in order to generate the compressed catalogue. We were thus able to store the
catalogue on a single DVD.

1Note the amazing compression rate—each grid takes on average only a little more than one byte.

13

5 Checker

5.1 Overall Strategy of Checker

The obvious algorithm for exhaustively searching a given sudoku grid for a 16-clue puzzle
simply tests all subsets of size 16 of the given grid for a unique completion. Although
such a brute force algorithm is effective in that the sudoku minimum number of clues
problem could be solved that way, the actual computing power required would be far too
great. In fact, even searching one grid only would take a long time since(

81

16

)
≈ 3.4 · 1016.

Fortunately, with a little theory the number of possibilities to check can be reduced dra-
matically. Very briefly, it is possible to identify regions (subsets) in a solution grid, called
unavoidable sets, that always have at least one clue from any proper puzzle contained
in that grid. Therefore, when picking the first clue of a trial (candidate) 16-clue puzzle,
one does not need to try out all 81 clues in the given grid; rather, one finds one smallest
unavoidable (sub)set and then tries each element in this unavoidable set as the first clue
of the puzzle being constructed. Similarly for all further clues.

So the overall strategy we use in our programme checker may be summarized as fol-
lows:

1. Find a sufficiently powerful collection of unavoidable sets for the given grid;

2. Enumerate all hitting sets of size 16 for this collection, i.e., enumerate all sets hav-
ing 16 clues that intersect all the unavoidable sets found in step 1;

3. Check if any of the hitting sets found is a valid 16-clue puzzle, i.e., test if any of
these hitting sets uniquely determine the given grid, by running each hitting set
through a sudoku solver procedure.

We explain each of these points in more detail now.

5.2 Unavoidable Sets For an Individual Grid

The idea of an unavoidable set originated on the sudoku forums, and is easily explained
by the following example.

14

9 3 7 8 5 6 2 4 1
5 6 2 1 9 4 3 8 7
4 8 1 2 7 3 5 6 9
8 2 3 6 4 7 9 1 5
6 1 5 9 3 2 4 7 8
7 4 9 5 8 1 6 2 3
3 7 8 4 6 9 1 5 2
1 9 6 7 2 5 8 3 4
2 5 4 3 1 8 7 9 6

The reader can see that if 5 and 9 are interchanged among the four red numbers only in

rows 1 and 2, columns 1 and 5, then a different valid completed sudoku grid is obtained.
Therefore, in any sudoku puzzle with this grid as the only possible answer, one of the four
red numbers must be a clue. Because, a puzzle not containing any of these four numbers
as a clue would have at least two solutions and therefore would not be a valid puzzle.
We say that the set of these four numbers is unavoidable—we cannot avoid having a clue
from these four. This motivates the following definition.

Definition. Let G be a sudoku solution grid.2 A subset X of G is called an unavoidable

set if G\X (the complement of X) has multiple completions.

So if a set of clues does not intersect every unavoidable set, then it cannot be used as a
set of clues for a sudoku puzzle because there will be multiple completions. Equivalently,
any set of clues for a valid puzzle must use at least one clue from every unavoidable set.
In fact, the converse is true as well:

Lemma 1. Suppose that X ⊆ G is a set of clues of a sudoku solution grid G such that X

hits (intersects) every unavoidable set of G. Then G is the only completion of X .

Proof. If X had multiple completions, then G\X would be an unavoidable set not hit by
X , contradiction.

An unavoidable set is said to be minimal if no proper subset is itself unavoidable.
Usually when we say unavoidable set we mean minimal unavoidable set.

2Formally, a sudoku solution grid (completed sudoku) is a function {0, . . . , 80} → {1, . . . , 9}, and when
we say “let X be a subset of a sudoku solution grid G” we identify G with the corresponding subset of the
cartesian product {0, . . . , 80} × {1, . . . , 9}.

15

5.2.1 Finding minimal unavoidable sets

In the original version of checker, unavoidable sets in a given grid were found using a
straightforward pattern-matching algorithm. More specifically, checker contained several
hundred different blueprints, where a blueprint is just a representative of an equivalence
class of (minimal) unavoidable sets, the equivalence relation again being the one from
Section 4.1. On the forums, Ed Russell had investigated unavoidable sets and compiled
a list of blueprints. We added all blueprints of size twelve or less from Russell’s list to
checker (525 blueprints in total).3 When actually finding unavoidable sets, checker would
simply compare each blueprint against all grids in the same equivalence class of the given
grid, modulo the digit permutations. That is, checker would generate 3, 359, 232 grids, as
explained in Section 4, and for every grid generated checker would try each blueprint for
a match. With a typical grid, this yields about 360 unavoidable sets in total.

Using the algorithm just described, finding unavoidable sets in a grid takes approxi-
mately half a minute. Five years ago this was not a major bottleneck because back then
checker took over an hour on average to scan a grid for all 16-clue puzzles, so that search-
ing the entire sudoku catalog was completely out of question anyway. However, once
we managed to efficiently enumerate the candidate 16-clue puzzles, in order to make this
project feasible, obviously we also had to come up with a better algorithm for finding
the unavoidable sets. While we kept our original strategy, again a bit of theory helps to
significantly reduce the number of possibilities to check.

Lemma 2. Let G be a sudoku solution grid and suppose that U ⊆ G is a minimal un-

avoidable set. If H is any other completion of G\U , then G and H differ exactly in the

cells contained in U . In particular, every digit appearing in U occurs at least twice.4

Proof. If G and H agreed in more cells than those contained in G\U , then U would
not be minimal as it would properly contain the unavoidable set G\(G ∩H). So when
moving between G and H , the contents of the cells in U are permuted such that the digits
in all cells of U change. If there was a digit d contained in only one cell of U , that digit
could neither move to a different row nor to a different column, since otherwise the row
respectively column in question would not contain the digit d anymore at all. That is, the
digit d stays fixed, in contradiction to what we just noted.

Corollary 3. Let G be a sudoku solution grid and suppose that U ⊆ G is a minimal

unavoidable set. If H is any other completion of G\U , then H may be obtained from G

3Later we wrote a small tool called unavpat, which enumerated all blueprints of a given size. We used
unavpat to prove that Russell’s list (from 2005) already contained every possible blueprint of size up to 11.

4We say that a digit d, 1 ≤ d ≤ 9, appears in U if there exists c ∈ {0, . . . , 80} such that (c, d) ∈ U .
Similarly we say that a cell c is contained in U if (c, d) ∈ U for some d.

16

by a derangement5 of the cells in each row (column, box) of U . Hence the intersection of

U with any row (column, box) is either empty or contains at least two elements.

Proof. Follows directly from the last lemma and since the rules of sudoku would be vio-
lated otherwise.

The basic idea how to make the actual search for minimal unavoidable sets in a given
grid faster is to replace the blueprints from Russell’s list by appropriate members in the
same equivalence class that are chosen such that only a fraction of grids equivalent to the
given one need to be checked for a match.

More concretely, call a blueprint an m× n blueprint if it hits m bands and n stacks
of the 9× 9 matrix, and treat the blueprints according to the number of bands and stacks
they hit. By taking the transpose if necessary, it is no loss of generality to assume that
each blueprints hits at most as many bands as it hits stacks, i.e, for an m× n blueprint we
may always assume that m ≤ n.

Suppose that m = 1, i.e., suppose that a blueprint hits only one band. By swapping
bands if necessary, we may then assume that only the top band is hit. Note that n ≥ 2,
since by Lemma 2, a 1× 1 blueprint cannot exist as any digit in a minimal unavoidable
set appears at least twice. Moreover, after possibly permuting some of the rows and/or
columns, we may in fact assume that two of the cells of the blueprint are as follows, again
because any digit appearing in a minimal unavoidable set occurs at least twice:

1
1

Figure 1: Two clues in any 1× n blueprint

For a 1× 3 blueprint we further choose, if possible, a representative that has no cells in
either the middle or the right column of the right stack.

When actually searching for instances of 1× 2 blueprints in a given grid, i.e., when
generating those representatives of the given grid that need to be considered in order to

5Recall that a derangement is a permutation with no fixed points, i.e., an element σ ∈ Sn such that
σ(k) 6= k,∀ k = 1, . . . , n.

17

find all occurrences of a 1× 2 blueprint, there will be three possibilities for the choice of
top band as well as six permutations of the three rows within the top band (once a band
has been chosen as the top band). So in total there are 18 different arrangements of the
rows, instead of 1,296 row permutations with the original algorithm.6 For the columns,
we have to consider all six possible arrangements of the three stacks, as well as all six
permutations of the columns in the left stack. Now the majority of 1 × 2 blueprints have
a stack containing cells in only one column of that stack. Therefore, if we choose such a
stack as the middle stack, then only the left column in the middle stack will contain cells
of the blueprint. So we do not actually consider all six permutations of the three columns
in the middle stack; rather, we try each of the three columns as the left column once only,
which means that we use only one (random) arrangement of the two remaining columns
in the middle stack. The reader will have noticed that this will, with 50% probability,
miss instances of those blueprints that have digits in the other two columns of the middle
stack, which is why all such blueprints are actually contained twice in checker, with the
respective columns swapped. Perhaps this is best explained by the following example of
a 1× 2 blueprint of size 10, which is saved twice in checker’s table of blueprints:

1 2 3 4
4 3 1 5

5 2

1 2 3 4
4 3 1 5

5 2

In total, 108 different permutations of the columns will be considered. However, only
in one out of six cases do we actually need to match all the 1× 2 blueprints against the
corresponding grid, since all our blueprints have the same digit in the top-left cell and
in the fourth cell of the second row as explained earlier, see Figure 1. Summing up the
above discussion, in order to find all 1× 2 unavoidable sets in a given sudoku solution
grid, instead of having to generate 3, 359, 232 (equivalent) grids, in actual fact we only
need to generate 324 grids.

We find 1× 3 unavoidable sets in a very similar manner; the only additional effort
required is that we also need to permute the columns in the right stack of the grid. As with

6A consequence of this inefficiency of the original algorithm was that most unavoidables were found
many times, especially so all 1× 2 unavoidables.

18

the middle stack, we do not try all six permutations, but only three permutations—each
of the three columns in the right stack is selected as the left column exactly once. Since
this would again miss half of those unavoidable sets having clues in multiple columns
of the right stack, the respective blueprints also appear twice in checker. In particular,
1× 3 blueprints having clues in multiple columns of both the middle and the right stack
actually appear four times in checker’s table of blueprints, e.g., this one here of size 12:

1 2 3 4
4 3 1 2

3 4 2 1

1 2 3 4
4 3 1 2

3 4 2 1

1 2 3 4
4 3 1 2

3 4 2 1

1 2 3 4
4 3 1 2

3 4 2 1

In order to tackle 2× 2, 2× 3 and 3× 3 blueprints, we need the following result.

Proposition 4. Every blueprint is equivalent to one containing the same digit twice in the

same band.

Proof. Later.

So for any blueprint it is no loss of generality to assume that two digits are as shown
in Figure 1, not just for 1× n blueprints. The actual algorithm used when searching for
2× 2, 2× 3, and 3× 3 unavoidable sets is similar to the one for 1× n unavoidable sets.
In fact, the only difference is that we further arrange for each blueprint to be of one of the

19

following three types, again in order to reduce the number of possibilities to check (note
that the first and the third type overlap):

1
2 1

2

1
2 1

2

1
2 1

2

With the above implemented, finding all unavoidable sets of size up to 12 in a sudoku
solution grid takes about 0.05 seconds on average.

5.2.2 Higher-degree unavoidable sets

There are unavoidable sets that require more than one clue, which we call higher-degree

unavoidable sets. Let us illustrate this with an example.

1 4 7
4 7 1
7 1 4

20

Note that two clues are needed from the nine digits shown in order to completely
determine these nine cells. Because, if only one is given, the other two digits may be
interchanged. These nine cells form an unavoidable set requiring two clues. Technically,
the above nine clues are really the union of nine minimal unavoidable sets of size six each,
and the intersection of these nine minimal unavoidable sets is empty, hence one clue is
not enough to hit all of them.

The above is an example of a degree 2 unavoidable set. If we say that an unavoidable
set as defined earlier is an unavoidable set of degree 1, then we can recursively define the
notion of an unavoidable set of degree k for k > 1.

Definition. A nonempty subset U ⊆ G is said to be an unavoidable set of degree k > 1,
if for all c ∈ U the set U\{c} is an unavoidable set of degree k − 1.7

As before, we say that an unavoidable set of degree greater than 1 is minimal if no
proper subset is unavoidable of the same degree. Furthermore, to ease notation, we will
say that U is an (m, k) unavoidable set if U is an unavoidable set of degree k having m
elements. So the above example is a (9, 2) unavoidable set that is the union of nine (6, 1)

unavoidable sets. Of course, one can easily construct higher-degree unavoidable sets, e.g.,
the union of any two disjoint minimal unavoidable sets is trivially an unavoidable set of
degree 2. More generally, we make the following definition.

Definition. A minimal unavoidable set U of degree k is said to be nontrivial if there does
not exist a minimal unavoidable set U1 of degree k1 and a minimal unavoidable set U2 of
degree k2 and disjoint from U1 such that U = U1 ∪ U2; otherwise, we say that U is trivial.

So the above (9, 2) unavoidable set is nontrivial. In fact, it is one of only two types of
nontrivial (9, 2) unavoidable sets, the other being this one:

1 2 3
2 1 4
3 4 1

7An equivalent (nonrecursive) definition would be to say that U is unavoidable of degree k if for all
combinations of distinct c1, . . . , ck−1 ∈ U , the set U\{c1, . . . , ck−1} is an unavoidable set in the earlier
sense. So in this project we have proved that any sudoku solution grid is unavoidable of degree 17.

21

We classified all minimal (m, 2) unavoidable sets for m ≤ 11. The result was that no
(m, 2) unavoidable sets exist for m ≤ 7. While (8, 2) unavoidable sets do exist, all these
are trivial, i.e., any (8, 2) unavoidable set is the union of two disjoint (4, 1) unavoidable
sets. Similarly minimal (10, 2) unavoidable sets exist, but again, all these are trivial (i.e.,
the disjoint union of a (4, 1) and a (6, 1) unavoidable set.) There are seven distinct types
of nontrivial (11, 2) unavoidable sets, which however we did not use in this project.8

Naturally we have the following result.

Proposition 5. Let U ⊆ G be an (m, k) unavoidable set. Then we need to add at least

k elements from U to G\U to obtain a sudoku puzzle with a unique completion. More-

over, if V ⊆ G is an (m′, k′) unavoidable set such that U ∩ V = ∅, then U ∪ V is an

(m+m′, k + k′) unavoidable set.

Proof. Both claims follow directly from the definition and by using induction on k re-
spectively k + k′.

Repeated application of the second part of this proposition gives the following useful
fact.

Corollary 6. Suppose that U1, . . . , Ut are degree k unavoidable sets of a sudoku solution

gridG that are pairwise disjoint. Then U1 ∪ · · · ∪ Ut is an unavoidable set of degree t · k.

Example

Using higher-degree unavoidable sets we give an example of a sudoku that requires 18
clues, at least. We can prove this fact purely mathematically using unavoidable sets of
degree 2.

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 3 4 5 6 7 8 9 1
5 6 7 8 9 1 2 3 4
8 9 1 2 3 4 5 6 7
3 4 5 6 7 8 9 1 2
6 7 8 9 1 2 3 4 5
9 1 2 3 4 5 6 7 8

Lemma 7. Any sudoku puzzle whose solution is this grid has at least 18 clues.
8Note how any minimal (11, 2) unavoidable set is necessarily nontrivial as there are no minimal (m, 1)

unavoidable sets for m = 1, 2, 3, 5, 7.

22

Proof. Upon inspection, the grid is the union of nine pairwise disjoint (9,2) unavoidable
sets. By the previous corollary this grid is therefore an (81,18) unavoidable set and thus
requires at least 18 clues for a unique solution.

We note that some choices of 18 clues lead to a unique solution, but some do not. We
also remark that results like this lemma are impossible to prove by hand for a general grid.
It is possible to prove the lemma by hand only because this grid is highly structured.

5.3 Enumerating the Hitting Sets For an Individual Grid

Now that we have shown how to quickly find a sizable collection of unavoidable sets for
a given grid, it is time that we finally explained how to efficiently enumerate the hitting
sets of size 16 for such a family of unavoidable sets. For this section, we fix a completed
sudoku grid and work within it.

Definition. Given a collection of subsets of clues (the unavoidable sets), a hitting set for
this collection is a set of clues that intersects every one of the subsets.

Recall that the hitting set problem is known to be computationally hard—in fact it is
one of R. Karp’s twenty-one classic NP-complete problems [13]. Thus it was likely that
a standard backtracking algorithm would not nearly be fast enough to search all grids in
the catalogue, which indeed turned out to be the case. We should also mention that a
common way to approach the hitting set problem is actually a greedy algorithm; however,
as the result such an algorithm produces is only approximate it is of no use in solving the
sudoku minimum number of clues problem.

5.3.1 Algorithm of the original checker

For our original version of checker from 2006 we essentially used the obvious algorithm
for finding hitting sets, with one small, but powerful, improvement. The strategy of this
algorithm can be described in one sentence—take one unavoidable set that has not been
hit and branch in all possible ways; repeat recursively until 16 clues have been picked in
this way.

That is, at each step, we first find one (smallest) unavoidable set that does not contain
any of the clues picked so far, and then try each element of this unavoidable set as the next
clue. We keep doing this until 16 clues have been chosen. If our collection of unavoidable
sets is exhausted before we get to the 16th clue, then we simply add the remaining clues
needed in all possible ways.

23

The data structure we used to accomplish the above was as follows. Suppose that
there are m members in our family F of unavoidable sets. Say F = {U1, . . . , Um} where
Ui ⊆ {0, . . . , 80} and #Ui ≤ #Ui+1. Then for each clue c ∈ {0, . . . , 80} there is a binary
vector of length m, called the hitting vector for c and which we will denote hitvec[c],
whose ith slot is given by XUi

(c), where for any subset S ⊆ {0, . . . , 80} the function
XS : {0, . . . , 80} → {0, 1} is defined by

XS(s) =

{
1, s ∈ S,
0, s /∈ S.

So XS is just the usual characteristic function (or indicator function) for S with respect
to {0, . . . , 80}, and the ith slot of hitvec[c] records whether or not the clue c is contained
in the unavoidable set Ui. Here is pseudocode for the procedure that sets up the hitting
vectors:

proc InitHittingVectors()

for c from 0 to 80

hitvec[c] := (X_{U[1]}(c),...,X_{U[m]}(c));

end for

end proc

We store the hitting set being constructed in the array hitset. When enumerating the hit-
ting sets, we need to keep track of which unavoidable sets have been hit already. There-
fore, there is another array of binary vectors of length m, statevec[0], . . . , statevec[16].
Initially we set statevec[0] := (0, . . . , 0), i.e., statevec[0] is the zero vector. If we add the
clue c at the kth step, 0 ≤ k ≤ 15, then we simply set

hitset[k+1] := c;

statevec[k+1] := statevec[k] OR hitvec[c];

What this means is that we first save the clue c to the array hitset and then perform
componentwise (bitwise) boolean OR on the binary vectors statevec[k− 1] and hitvec[c]

and store the result in statevec[k]. So statevec[k] contains a 1 in the ith slot if and only
if either statevec[k− 1] or hitvec[c] has a 1 in the ith slot, which is so if and only if
either the set Ui was already hit, or if c ∈ Ui. We recursively do this until either k = 16 or
statevec[k] = (1, . . . , 1) for some k < 16. In the latter case, i.e., if at some stage we find
that all the unavoidable sets in our collection have been hit, we add 16− k more clues
to the hitting set in all possible ways and then check the resulting 16-clue puzzles for a
unique solution, by running them through a sudoku solver procedure, see Section 5.4.

24

At the beginning of this subsection, we said that there was one small improvement
(over the obvious hitting set algorithm) that we already used in the original checker and
which we will describe now. It addresses one clear shortcoming of the above, naive,
algorithm, namely the fact that this algorithm will enumerate most candidate 16-clue
puzzles multiple times. For example, suppose that the first three sets in our family F
of unavoidable sets to be hit are

U1 = {0, 3, 9, 12},

U2 = {0, 1, 27, 28},

U3 = {3, 4, 66, 67}.

When we choose 0 ∈ U1 as the very first clue of the hitting set under construction, then
U2 is also hit automatically, so we will use U3 as the set for drawing the second clue from.
The first element in U3 is 3, so one possibility for the first two clues is {0, 3}. On the other
hand, when the algorithm later chooses 3 ∈ U1 as the first clue of the hitting set, then U2

is still unhit, so will be used for drawing the second clue from. However 0 ∈ U2, so again
one possibility for the first two clues is {0, 3}.

To avoid duplicating work as in the example just given, we incorporated the dead clue

vector into the original checker to ensure that every 16-clue puzzle is enumerated once
only. The basic idea is that, whenever we add a clue to the hitting set from an unavoidable
set, we consider all smaller clues from that unavoidable set as dead, i.e., we exclude these
smaller clues from the search (in the respective branch of the search tree only). We again
use a binary vector, of length 81, to keep track of which clues are dead, and whenever
we add a clue, we check immediately beforehand whether or not that clue was already
excluded earlier. Going back to the example just given, when we choose 3 ∈ U1 as the
first element of the hitting set, then we also mark the element 0 ∈ U1 as dead. The next
unavoidable set not hit is U2, and normally we would now try 0 as the second clue in
the hitting set. However we excluded 0 as a possible future clue in the previous step, so
there will be only three branches in this case (only 1, 27, and 28 are actually tried as the
second clue of the hitting set being constructed). So the pseudocode for the procedure
that initially sets up the required binary vectors is as follows:

proc Initialize()

// first set up vectors needed for the dead clues

for each U in F // F = family of unavoidable sets

for each c in U

U.deadclues[c] := (0,...,0);

for each d in U

25

if d <= c then

U.deadclues[c].SetBit(d);

end if

end for

end for

end for

deadvec[0] := (0,...,0);

// now set up hitting vectors, see above

InitHittingVectors();

statevec[0] := (0,...,0);

end proc

The actual procedure that recursively adds clues to a hitting set then looks like so:

proc AddClues(k)

if statevec[k] = (1,...,1) then

// all unavoidable sets are hit, add 16-k clues

// in all possible ways and then check each

// puzzle for a unique completion

GeneratePuzzles(k,hitset,deadvec[k]);

return;

else if k=16 then

// already drawn 16 clues, but some unavoidable

// sets are still unhit, so nothing to do

return;

end if

// ’F’ is the family (array) of unavoidable sets

// pick the first unavoidable set that is unhit

U := F[statevec[k].GetIndexOfLowestZeroSlot()];

for each c in U

// first verify that this clue is still alive

if deadvec[k].GetBit(c) = 0 then

// add clue to hitting set

hitset[k+1] := c;

// update the state vector (which keeps track

// of which unavoidable sets are already hit)

statevec[k+1] := statevec[k] OR hitvec[c];

// exclude all smaller clues from the search

26

deadvec[k+1] := deadvec[k] OR U.deadclues[c];

// recursively add the remaining clues

AddClues(k+1);

end if

end for

end proc

We take a moment to convince ourselves that the above algorithm does not miss any
hitting sets. So suppose that G is a sudoku solution grid containing a proper 16-clue
puzzle P . We need to show that algorithm just presented will find P . Let U be the
member of the family F of unavoidable sets used by checker for drawing the first clue
from. Since P is a proper puzzle, it intersects U , so we may set c := min P ∩ U , i.e., we
let c be the smallest clue of U contained in P . When we add c to our candidate hitting set,
only clues smaller than c will be excluded from the search, however, as c is the smallest
clue of P contained in U , no clues of P will actually be excluded. The exact same is true
for the second, third, etc., clue we add—at each stage, when we add the smallest clue of
P also contained in the unavoidable set in question, only clues not appearing in P will
be marked dead. After adding the 16th clue in this way, our hitting set will equal P , and
since P hits all unavoidable sets, in particular, all unavoidable sets contained in the family
F that checker uses, no further unavoidable sets are available, so that checker will test the
set P for a unique completion, and thus find the 16-clue puzzle P .

As a closing remark, we originally added the dead clue vector to checker because we
wanted to search this special grid

6 3 9 2 4 1 7 8 5
2 8 4 7 6 5 1 9 3
5 1 7 9 8 3 6 2 4
1 2 3 8 5 7 9 4 6
7 9 6 4 3 2 8 5 1
4 5 8 6 1 9 2 3 7
3 4 2 1 7 8 5 6 9
8 6 1 5 9 4 3 7 2
9 7 5 3 2 6 4 1 8

for all 17-clue puzzles. To this day, this particular grid holds the world record as the grid
having the largest known number of 17-clue puzzles (29, all found by Gordon Royle).
Back in 2005, this grid was considered a likely candidate to have a 16-clue puzzle, but
using checker we proved that none existed in it. Of course, we also wanted to know
exactly how many 17-clue puzzles it contained, but the very first checker would have

27

taken several months of CPU time to answer that question. After we had implemented the
dead clue vector in 2006, we were able to exhaustively search the grid in less than a week
for all 17-clue puzzles. The result was that Gordon Royle had already found all of them,
i.e., it was now known that there are exactly 29 different 17-clue puzzles contained in the
grid.

5.3.2 Algorithm of the New checker

As far as the algorithm is concerned, there are really three differences between the original
checker and the version we used for searching all grids in the catalogue.

The first one is that we added (trivial) higher-degree unavoidable sets to checker so as
to obtain an early “no” during the enumeration of hitting sets whenever possible, i.e., in
order to abandon the search of a branch as soon as possible. For instance, if, after drawing
15 clues, there is an unavoidable set of degree 2 that is not yet hit, then we do not have to
continue and draw the 16th clue as we know that at least two more clues are required for
a hitting set.

The second difference is that we discard all those unavoidable sets that have been
hit after drawing the first few clues, so that, when adding the remaining clues, we are
working with shorter vectors (i.e., a smaller amount of data). For instance, initially we
begin with (up to) 384 minimal unavoidable sets, and after drawing the first seven clues,
we check which unavoidable sets have been hit and continue with only the smallest (up
to) 128 unavoidable sets. So when picking the last nine clues, for tracking the minimal
unavoidable sets we are using binary vectors of length 128 only, not binary vectors of
length 384 as with the first seven clues. Similarly for the higher-degree unavoidable sets.

The third improvement is that, when choosing which unavoidable set to use for draw-
ing the next clue from, we now invest some effort to make the best, or at least a better,
choice. Recall that with the original checker, we selected the unavoidable set to use for
drawing the next clue from in a greedy fashion—we simply used one of smallest size.
However, this is not generally optimal. A different unavoidable set of the same size,
or even a bigger set, may be a better choice since some of its clues may have been ex-
cluded from the search already, so that its effective (or real) size, and hence the number
of branches to be taken, may actually be smaller. Therefore, when choosing unavoidable
sets for drawing clues from, the new checker also takes the dead clue vector into account.

The first of the above changes is certainly the most important one, and without it
this computation would not have been feasible for several years. However, the other two
changes, too, saved us a considerable amount of CPU cycles. We will now discuss all
three improvements in detail. We begin with the third change, for which we need the

28

following definition.

Definition. A collection of pairwise disjoint unavoidable sets in a sudoku solution grid is
called a clique. If there is no bigger clique (having a greater number of unavoidable sets),
then we further say that the clique is maximal.9

In the original checker, the procedure that enumerated all the hitting sets would actually
first find a maximal clique among the unavoidable sets supplied to it; say m is the size
of this clique. It would then take the cartesian product of the unavoidable sets the clique
consisted of. Every element (m-tuple) of this cartesian product would be considered
individually, and a further 16−m clues were added by drawing more clues from other
unavoidable sets, as described in the previous subsection. The first thing to notice is
that using a clique in this way is not ideal, because a maximal clique will often involve
unavoidable sets of size 10 or bigger, whereas even after drawing as many as 15 clues, the
smallest unavoidable set not yet hit in most cases has just six or maybe eight elements.
Therefore it is better to just choose the next unavoidable set for drawing clues from to be
one of smallest size among those not yet hit. So from our array of minimal unavoidable
sets, we pick the one of lowest index that does not contain any of the clues drawn so far.
Since this array is ordered by size, this will automatically yield a set of smallest size.
However, as pointed out already, this is still not usually the best choice, for instance, if
the unavoidable set of lowest index that is not yet hit has empty intersection with the set
of currently dead clues, and the unavoidable set of second lowest index that is not yet hit
has the same size but one of its clues has been marked ‘dead’ earlier. For this reason, in
the new checker, when selecting the first ten clues we always use an unavoidable set of
minimum effective size.10 (Here, the effective size of an unavoidable set is the number of
clues it has that are not yet dead.) The way to efficiently accomplish this is to first invert
the vector of dead clues, so that we obtain the vector of alive clues, i.e., the binary vector
that has a 1 in slot i precisely if the clue i is still alive. Then, for each unavoidable set
that is still unhit, we take the boolean AND of the vector of alive clues with the vector
that has a 1 in exactly those slots corresponding to the clues this set contains (i.e., in the

9This terminology comes from graph theory—in the original checker, a maximal clique was found by
setting up an undirected graph whose vertices were the minimal unavoidable sets, and where two vertices
were adjacent if the corresponding unavoidable sets were disjoint. A standard clique algorithm was then
used to find a maximal clique in this graph. Hence the term “max clique number”, or MCN for short—the
biggest number of pairwise disjoint unavoidable sets that a grid possesses. In particular, a grid whose MCN
is m cannot have a puzzle with fewer than m clues.

10For the eleventh clue we still find the unavoidable set of minimum effective size among the first 64
unavoidable sets in our collection, and for the twelfth clue we find the unavoidable set of minimum effective
size among the first five unavoidable sets not yet hit. For drawing the remaining four clues we always simply
use the first unavoidable set not yet hit. The reasons for this are explained in Section 5.5 “Tradeoffs”.

29

latter vector we set all slots corresponding to dead clues to zero). We finally obtain the
Hamming weight of the resulting vector, which is equal to the effective size. As we do
this for all unavoidable sets, we remember the index of the first set that had the minimum
effective size.

Next we will explain the most important of the three improvements we made to the
algorithm. It is about how the use of trivial higher-degree unavoidable sets enables us
to (considerably) prune the search tree. Directly from the definition, if, after drawing k
clues, there is an unavoidable set of degree 17− k that is not hit, then we do not need to
traverse the respective branch of the search tree as we already know that it cannot contain
any proper 16-clue puzzles. On the other hand, by Corollary 6, the union of the sets in a
clique of size m is an unavoidable set of degree m. Therefore, right before we begin the
search, we obtain a sizeable collection of unavoidable sets of degree 2, 3, 4, 5, simply by
finding cliques of size 2, 3, 4, 5. We track these higher-degree unavoidable sets during the
enumeration of hitting sets just like the ordinary (degree 1) unavoidable sets, i.e., through
the use of state and hitting vectors for each degree. By what we just said, after 12 clues
have been drawn, if there is an unavoidable set of degree 5 in our collection that is not
hit, then we may abandon the search and backtrack immediately. Similarly if there is an
unavoidable set of degree 4, 3, or 2 in our collection that is not hit after drawing 13, 14,
respectively 15 clues. This may seem like an obvious way to prune the search tree with
the hitting set problem, however, back in late 2008 when we first realized that the above
would allow us to dramatically speed up checker11, this was not yet described anywhere in
the literature, even though, like the other two improvements we made, as well as the dead
clue vector, it is not at all specific to sudoku but applies in an equal manner to the general
hitting set problem. Actually the first public mention of this idea, to our knowledge, was
in a posting of July 23rd, 2010 to the sudoku programmers’ forum by Mladen Dobrichev,
who had just released his open-source tool GridChecker:

“UA set is a region of the grid where we know at least one clue must exist.
[...] Additionally there are regions where at least two clues must exist. A
trivial example of such region is the union of 2 mutually disjoint UA sets—
UA sets which have no cell in common. But, it is not necessary such regions
to consist of disjoint UA. For example 3 UA of size 6 could form region of
size 9 requiring at least 2 clues. [...] Similarly there are regions where at least
3, 4, 5, etc. clues must exist.”

It is remarkable how Dobrichev even used the term trivial unavoidable set. However, what
11By mid-2009, we had a version of checker searching for 15-clue puzzles up and running that used

higher-degree unavoidables just as described above (references available on request).

30

he does not seem to have fully realized is the power of this idea—although GridChecker
does use trivial higher-degree unavoidable sets, with the exception of the degree 2 un-
avoidable sets, even in the very latest release of GridChecker apparently only a relatively
limited collection of higher-degree unavoidable sets is being used, namely those coming
from the members of a maximal clique.12 Moreover, though a powerful collection of un-
avoidable sets of degree 2 is actually being used, it seems that it is only fully deployed in
the method chunkProcessor :: iterateClue, for which it was “rare”, in the words of Do-
brichev, that the last clue was being picked there. (In GridChecker, the last clue is usually
drawn, if at all necessary, in chunkProcessor :: iterateClueBM.)

Earlier we said that the idea of using trivial higher-degree unavoidable sets was not
described in any research article at the time we started work on the new checker (in 2008).
This changed in November 2010, when I-Chen Wu et. al. published the paper [18]. In this
work, in Lemma 2 it is proven that the search for an n clue puzzle in a sudoku solution
grid can be stopped after selecting m clues provided that there are at least n−m+ 1

unavoidable sets that are not yet hit (n−m+ 1 “active” unavoidable sets, in the language
of that paper). The authors further describe how they used this result so as to speed up
our original checker by a factor of 129 and hence achieve a running time of 13.9 seconds
per sudoku solution grid on average, a remarkable improvement. As far as the problem
of finding a clique of a certain size of active unavoidable sets is concerned, they point out
that the maximal clique problem is itself NP-complete (like the hitting set problem), and
that they therefore use a greedy algorithm for trying to construct cliques of the required
size.

However, this is not the most efficient way, and it is likely the main reason why our
own, new checker is about twice as fast as the checker written by Wu and colleagues. For,
constructing new cliques over and over again, even just small ones, means duplicating
effort. On the other hand, in our new checker we compute a large number of cliques
of all sizes less than or equal to five just once at the beginning of the search, and keep
track of which ones are hit (become inactive) as we add more clues. The consequence
is that, e.g., after drawing twelve clues, we merely have to do a boolean OR of two
binary vectors (of length 1,536) and then check if the resulting vector has a 1 in every
slot in order to find out if there is an clique of size five.13 All that can be done quite
efficiently using SIMD programming, whereas constructing a clique of size 5 from scratch

12So GridChecker also uses a maximal clique, however, it does so in a much more clever way than our
original checker.

13Note that, the moment we find that one slot has a 0, we do not need to compute the remaining slots.
In other words, it is actually sufficient to do the boolean OR on just part of the vectors involved at first. In
the case of the degree 5 unavoidable sets, we compute the required vector in three steps, checking for a slot
containing a zero at the end of each step.

31

is certainly more work and in particular involves much more dependencies (where an
operation requires the output of the previous one) and is therefore not very suitable for
SIMD programming. Of course, with our method, more work has do be done upfront
(while the first 11 clues are picked), but on the other hand, a greedy algorithm will often
miss cliques of the desired size even though they exist. On balance, it seems that ours is
the more efficient approach.

Now is a good time to summarize exactly what we actually do. We will walk through
the case of the cliques of size 4; the other ones are similar. So suppose that there arem sets
U[1], . . . ,U[m] in our initial family of minimal unavoidable sets. We add the following
statements to the procedure InitHittingVectors, see p. 24.

var count := 0;

const START := 27;

for i from START to m

for j from START-1 to i-1

if U[i] intersects U[j] then

continue;

end if

for k from START-2 to j-1

if U[k] intersects either U[i] or U[j] then

continue;

end if

for l from START-3 to k-1

if U[l] intersects none of U[i],U[j],U[k] then

// found a clique of size 4

CLQ[count] := union(U[i],U[j],U[k],U[l]);

inc(count);

if count = 32768 then

goto SetUpHittingVectors;

end if

end if

end for

end for

end for

end for

SetUpHittingVectors:

for c from 0 to 80

32

quadhitvec[c] := (X_{CLQ[0]}(c),...,X_{CLQ[count-1]}(c));

end for

Here CLQ is an array of sets, quadhitvec is an array of binary vectors of length 32,768,
and XCLQ[i] : {0, . . . , 80} → {0, 1} is again the indicator function for the set CLQ[i] with
respect to {0, . . . , 80}. Finally, START is a constant used to ensure that we do not collect
cliques that will be hit anyway after drawing 13 clues. Obviously there is no point using
cliques involving U[1], for example, since the first unavoidable set in our array will always
be used for drawing the first clue from, so will in particular be hit by the time we check if
there is an unhit clique of size 4.

The final improvement we made to the algorithm is that, with the unavoidable sets,
after picking the first few clues, we discard those sets that have already been hit. The
reason for this is that we then have to carry fewer data in checker in the innermost loops.
For instance, when enumerating hitting sets, initially we use a binary vector of length
32,768 to track the unavoidable sets of degree 4, but after the first five clues have been
drawn, we switch to a vector of length 1,536. Of course we also have to update the
respective hitting vectors. We refer to this process as consolidating the hitting vectors. In
a future version of this document we will describe exactly how this works. For now we
refer the reader to the procedure ConsolidateHitvec in the file checker.cpp of the checker
source code.

5.4 Using A Sudoku Solver

We require a sudoku solver for checker, because we run all hitting sets that survive through
the solver to see if they have a unique completion. In fact, we only need to test if a hitting
set has more than one completion, so once two completions are found, we discard that
hitting set and move to the next one. We do not need the exact number of completions.

In the original version of checker we used Guenter Stertenbrink’s public domain
solver. For this computation, however, we switched to the open-source sudoku solver
written by Brian Turner, which is available online. This solver can check around 50,000
16-clue puzzles per second for a unique completion, and at the time we had to make a de-
cision which solver to use with the new checker, Turner’s solver was the fastest available,
to our knowledge.

5.5 Tradeoffs

During the development of checker, there were several design choices that involved trade-
offs. That is, there were often several alternatives that each had their advantages, so we

33

had to find out the best (fastest) by experimentation. These include:

• The number unavoidable sets to use, both minimal and of higher degree. Obviously
using more unavoidable sets results in fewer hitting sets being found, however, there
is of course a price for having access to a larger selection of unavoidable sets. We
found that initially starting out with up to 384 minimal unavoidable sets was the
optimum. For example, we also tried adding unavoidable sets of size 13 to checker,
but it made almost no difference to the running time one way or another.

• The point at which we consolidate the hitting vectors. Doing that later means a
more powerful collection of unavoidable sets in the innermost loops of checker,
where most of the running time is spent. However, doing that later also means
having to do it more often. The best combination could only be found through
experimentation.

• Finding the best unavoidable set to use for drawing clues from. In principal it would
be best to always use the unavoidable set having the least effective size, but obvi-
ously not so if the performance hit incurred by finding this particular unavoidable
set outweighs the gain. Again, some experimentation was required.

There are other trade-offs, which we will describe in a later version of the article.

5.6 Some remarks on the implementation of the new checker

During much of this chapter we described how we made checker faster by improving the
algorithm. Of course, once one has decided on an algorithm it is also possible to improve
the running time by making changes to the implementation. The main change to the
implementation (compared to the original checker) is that we expanded all function calls
when enumerating hitting sets. So there are no recursive function calls when drawing
more clues in the new checker, rather, there are now sixteen nested loops, one for each
clue.

5.7 Testing checker

Certainly the most important aspect of this project is correctness. At first glance, it may
appear difficult to verify the correctness of our programme checker on the grounds of the
lack of available test cases (no known sudoku grids containing any 16-clue puzzles). So
to be able to do at least some amount of testing, we produced a version of checker that
searches for 17-clue puzzles. We ran this checker on all known grids having at least one

34

17-clue puzzle, and with every such grid, all the 17-clue puzzles that grid was known to
contain were found by checker.

Since there is also one known pseudo 16-clue puzzle, i.e., a puzzle with 16 clues
having two solutions, as a test we also modified checker such that it would find puzzles
with two solutions. We ran it on the aforementioned grid and the pseudo 16-puzzle was
found.

As far as white-box testing goes, we have applied state-of-the-art software-engineering
practices. In particular, using the debugger we stepped through every single line of the
code, carefully verifying that each instruction does exactly what we thought it would
do. For further debugging, we also used the tool valgrind, as well as its companion
cachegrind, the latter mainly for optimizing memory accesses.

Moreover, to be on the safe side, after the procedure that finds all the minimal unavoid-
able sets in a grid is finished, we again test each set found, by running its complement
through the solver, to make sure that the set is really unavoidable.

Similarly, we also double-check the answer the solver produces. Each time a puzzle
is run through the solver, we have the solver save the first two completions found. Then
we check that both completions are in fact valid completions of the given puzzle, and
we further verify that they are actually different. However, this situation never actually
happened with any grid, i.e., the answers the solver provided were always correct. (Should
that ever not have been the case, then the grid in question would have been logged.)

35

6 Running Through All Grids: Further Details about
Code Performance and the Computation

With checker in hand, the actual search involved running through the catalogue of all
grids, and executing checker on each grid. Because of the number of grids (about 5.5 bil-
lion) this had to be done using a large number of processors. In this section we discuss
the details of this computation.

6.1 Platform

As mentioned already, during our PRACE prototype project in late 2009 [3], we were able
to try an early version of the new checker on four different platforms (AMD Istanbul, IBM
Blue Gene/P, IBM Power 6, Intel Nehalem), and found out that Nehalem is the best for
us. Therefore we totally optimized checker for Nehalem, to the extent of rewriting much
of the code in assembly language (originally checker was written completely in C++). We
did this in such a way so as to maximize simultaneous use of the various execution units
of a Nehalem core (instruction-level parallelism). We further heavily used SSE/SIMD
to facilitate data-level parallelism. Also, using machine language allowed us to retain
key data checker frequently uses inside the processor’s registers, thereby further reducing
overhead. Finally, we were of course able to take advantage of the SMT mode of a
Nehalem CPU (hyper-threading), which was enabled on the cluster Stokes at ICHEC that
we used for this computation.

Note that the different tasks (grids) to be considered with this project were completely
independent of each other, i.e., our computation was embarrassingly parallel. So the
parallelism — utilizing hundreds or even thousands of processor cores simultaneously —
of this project was almost trivial. We only had one type of run, which scaled linearly with
the number of processors. Moreover, we were always entirely flexible on the maximum
duration of a run and on the number of cores allowed per run. The only limitation was
that there had to be one MPI process that managed the run (the master) and which was
thereafter unavailable for the actual computation. However, there was nonetheless no
significant loss of efficiency since the SMT mode compensated very well for this.

6.2 Load Balancing and Task Farming

One nontrivial aspect of this computation was the load-balancing14, as there was consid-
erable variability in the running time of checker, depending on the grid — approximately

14Load-balancing refers to the distribution, or task farming, of the jobs by a master node to the slave
nodes.

36

20% of all solution grids consumed roughly half of the total running time, and the remain-
ing 80% of grids the other half. Furthermore, for optimal efficiency, we naturally wanted
all slave nodes to finish around the same time.

During our PRACE prototype run we used task farming software developed by Gilles
Civario to run an early version of checker on 64 racks (262,144 CPUs) of JUGENE si-
multaneously. This worked very well, so the load-balancing problem problem was solved
with this software. Moreover, as the time required for analyzing one sudoku solution
grid is typically of several orders of magnitude shorter than the duration of one job, the
usage of the CPU cores was near-optimal, i.e., almost no processor time was lost at the
end of a job. Therefore the actual speedup gained by increasing the number of nodes was
practically equal to the theoretical (ideal) speedup.

6.3 The Actual Computation

The entire computation took about 7.1 million core hours on the Stokes machine. Stokes
is an SGI Altix ICE 8200EX cluster with 320 compute nodes. Each node has two Intel
(Westmere) Xeon E5650 hex-core processors and 24GB of RAM. We divided the com-
putation up into several hundred jobs. We started running jobs in January 2011, and we
finished in December 2011.

37

7 Acknowledgements

This work has built on ideas and work of many other people. It began from reading
posts on the sudoku forums, and we thank many of the posters. They include Guenter
Stertenbrink, Gordon Royle, Ed Russell, Glenn Fowler, Roger Wanamo, who helped at
various stages. We also thank Konstantinos Drakakis and ICHEC for some extra CPU
hours. We thank the staff of ICHEC who were very supportive throughout the project.

38

References

[1] Gordon F. Royle, A collection of 49,151 distinct Sudoku configurations with 17

entries, http://mapleta.maths.uwa.edu.au/~gordon/sudokumin.php

[2] Gary McGuire’s Sudoku Page, http://www.math.ie/checker.html

[3] http://www.prace-project.eu/news/six-projects-granted-access-to-the-prace-
prototype-systems-4-5-million-core-hours

[4] http://forum.enjoysudoku.com/ and http://www.setbb.com/sudoku

[5] http://model.research.glam.ac.uk/projects/sudoku/

[6] Ed Pegg Jr., Sudoku Variations, Math Games, September 2005,
http://www.maa.org/editorial/mathgames/mathgames 09 05 05.html

[7] Laura Taalman, Taking Sudoku Seriously, Math Horizons, Volume 15, September
2007, pp. 5–9, http://www.math.jmu.edu/~taal/sudoku mathhorizons.pdf

[8] Agnes M. Herzberg and M. Ram Murty, Sudoku Squares and Chromatic Polyno-

mials, Notices of the AMS, Volume 54, Issue 6, pp. 708–717, June/July 2007,
http://www.ams.org/notices/200706/tx070600708p.pdf

[9] Jean-Paul Delahaye, The Science behind Sudoku, Scientific American, June 2006,
pp. 80–87, http://www.cs.utexas.edu/~kuipers/readings/Sudoku-sciam-06.pdf

[10] Max Neunhöffer, Is there a Sudoku puzzle with 16 clues?, Lecture at the University
of Aberdeen, March 2010,
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Publications/pdf/sudoku16 aberdeen.pdf

[11] Faisal N. Abu-Khzam, Kernelization Algorithms for d-Hitting Set Problems,
LNCS 4619, pp. 434-445, 2007.

[12] Rolf Niedermeier and Peter Rossmanith, An efficient fixed-parameter algorithm

for 3-Hitting Set, Journal of Discrete Algorithms 1, pp. 89-102, 2003.

[13] Richard M. Karp, Reducibility Among Combinatorial Problems, in R. E. Miller
and J. W. Thatcher (editors), Complexity of Computer Computations, New York:
Plenum, pp. 85–103, 1972.

39

[14] Bertram Felgenhauer and Frazer Jarvis, Mathematics of Sudoku I, Mathematical
Spectrum, Volume 39, Number 1, pp. 15–22, September 2006,
http://www.afjarvis.staff.shef.ac.uk/sudoku/felgenhauer jarvis spec1.pdf

[15] Ed Russell and Frazer Jarvis, Mathematics of Sudoku II, Mathematical Spectrum,
Volume 39, Number 2, pp. 54–58, January 2007,
http://www.afjarvis.staff.shef.ac.uk/sudoku/

[16] Glenn S. Fowler, A 9x9 sudoku solver and generator,
http://research.att.com/~gsf/sudoku

[17] Mladen Dobrichev, Sudoku GridChecker,
http://sites.google.com/site/dobrichev/gridchecker/

[18] Hung-Hsuan Lin, I-Chen Wu, Solving the Minimum Sudoku Problem, TAAI,
pp. 456–461, 2010 International Conference on Technologies and Applications
of Artificial Intelligence.

40

